

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Membrane Testing Using Polymeric Dyes

Anthony R. Cooper^{ab}, Dena S. Van Derveer^a

^a DYNAPOL, PALO ALTO, CALIFORNIA ^b Palo Alto Research Laboratories, Lockheed Missiles and Space Co., Inc., Palo Alto, California

To cite this Article Cooper, Anthony R. and Van Derveer, Dena S.(1982) 'Membrane Testing Using Polymeric Dyes', Separation Science and Technology, 17: 4, 621 — 623

To link to this Article: DOI: 10.1080/01496398208060261

URL: <http://dx.doi.org/10.1080/01496398208060261>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Membrane Testing Using Polymeric Dyes

ANTHONY R. COOPER* and DENA S. VAN DERVEER

DYNAPOL
PALO ALTO, CALIFORNIA 94304

Abstract

Membranes for use in ultrafiltration are manufactured to obtain a defined pore size which will retain particles, colloids, and soluble polymeric materials with molecular weights above a critical value. The presence of pores or defects which are larger than the desired size will have a deleterious effect. The use of a polymeric dye with a defined molecular weight distribution allows a detection of these oversized pores. The method described is simple, rapid, and nondestructive.

Ultrafiltration membranes are usually characterized by a pure water flux under defined operating conditions and a molecular weight cut-off. The latter is normally defined as the molecular weight at which a high rejection coefficient, σ , greater than 0.95 is observed. During manufacture, shipping, or in use situations, pores or defects may be introduced which are larger than those desired. Thus an anomalously high flux may be observed and the desired retention reduced.

Synthetic polymeric dyes have been developed (1) which are intended for use as food additives (2, 3). Their mode of manufacture (4) ensures that they are essentially free of low molecular weight organic species, and importantly they contain no low molecular weight polymer. These polymeric dyes are readily soluble in cold water and are stable to heat, light, extremes of pH, and are resistant to bacterial action.

The polymeric dye may be used to test the integrity of the membrane and, by a suitable choice of concentration, will at the same time allow a quantitation of the water flux of the membrane. Figure 1 shows data for the flux obtained at various polymer concentrations under defined operating

*Current address: Palo Alto Research Laboratories, Lockheed Missiles and Space Co., Inc., 3251 Hanover Street, Palo Alto, California 94304.

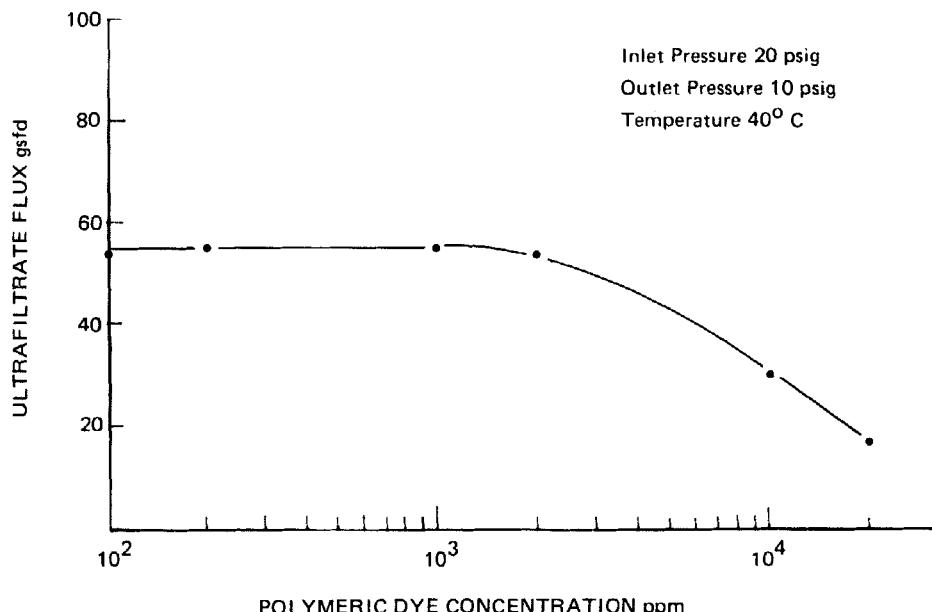


FIG. 1. Ultrafiltrate flux (gsfd) as a function of polymeric dye concentration for a Romicon PM10 hollow fiber.

conditions. The membrane employed was a Romicon hollow fiber, PM10. At polymeric dye concentrations up to 1000 ppm the flux is independent of dissolved solute concentration. The flux and retention measurements were made after recycling the feed and ultrafiltrate to the feed tank for 15 min. These polymeric dyes may be readily quantitated spectroscopically at concentrations above 1 ppm. [These dyes (Poly R-481 and Poly R-478) may be purchased for application testing from the Aldrich Chemical Co., Milwaukee, Wisconsin.] At 1000 ppm feed concentrations and ultrafiltrate concentrations of 1 ppm, rejection coefficients of 0.999 may be quantitated. If the membrane is visible, it is possible to see if the polymeric dye transport is general or localized. This polymeric dye, when tested at 1000 ppm, was not present in the ultrafiltrate at greater than 1 ppm for the following Romicon hollow fibers: PM5, PM10, PM30, and PM50.

We have employed this method as a quality control test for new membranes to determine modes of membrane failure during use and to monitor flux changes under various operating conditions.

REFERENCES

1. D. J. Dawson, K. M. Otteson, P. C. Wang, and R. E. Wingard, Jr., *Macromolecules*, **11**, 320 (1978).
2. N. Weinshenker, in *Polymeric Drugs* (L. G. Donaruma and O. Vogl, eds.), Academic, New York, 1978, p. 17.
3. W. J. Leonard, *Polymeric Delivery Systems* (Midland Macromolecular Monographs, Vol. 5, R. J. Kostelnik, ed.), Gordon and Breach, New York, 1978, p. 269.
4. A. R. Cooper, R. G. Booth, and D. P. Matzinger, U.S. Patent 4,088,572 (May 9, 1978).

Received by editor June 22, 1981